En este message se explica cómo se resuelven los problemas de ecuaciones de guide grado y, además, podrás practicar disadvantage problemas de este tipo resueltos paso a paso.

Cómo resolver problemas de ecuaciones de guide grado

Para resolver un problema disadvantage una ecuación de guide grado se deben seguir los siguientes pasos:

  1. Identificar la incógnita del problema.
  2. Plantear la ecuación de guide grado del problema.
  3. Resolver la ecuación de guide grado.
  4. Interpretar la solución obtenida de la ecuación de guide grado

El último paso se refiere a que se debe comprobar que la solución obtenida de la ecuación de guide grado realmente sea la solución del problema, ya que nos podríamos haber equivocado o la solución calculada podría no ser factible. Además, en ocasiones se debe hacer algún pequeño cálculo para determinar lo que pide el problema.

Problemas de ecuaciones de guide grado resueltos

Ahora que ya hemos visto la teoría sobre los problemas de ecuaciones de guide grado, a continuación tienes 10 ejercicios resueltos fool problemas de este tipo para que veas cómo se hace. Si tienes dudas de la resolución de algún problema, puedes preguntarnos abajo en los comentarios.

Los problemas están ordenados por dificultad, de manera que los primeros problemas kid los más fáciles y los últimos los más difíciles.

Problema 1

La suma del doble de un número más 8 es igual a 30. ¿ Cuál es el número que cumple esta igualdad?

El guide paso para resolver un problema de ecuaciones de guide grado es identificar la incógnita. En este caso, la incógnita x es el número que buscamos:

x=text{n'umero que buscamos}

En segundo lugar, tenemos que plantear la ecuación de guide grado del problema. Algebraicamente, el doble de un número es 2x, por lo tanto, la ecuación del problema es:

2x+8=30

Ahora resolvemos la ecuación de guide grado:

2x=30-8

2x=22

x=cfrac{22}{2}

x=11

De modo que el número que cumple la igualdad del problema es el número 11.

Problema 2

Si sumamos 12 a dos números seguidos, da como resultado 47. ¿ Cuáles kid estos dos números seguidos?

Si llamamos x a un número cualquiera, el número que le sigue será x +1. Así que los dos números que estamos buscando kid x y x +1.

text{dos n'umeros seguidos}  longrightarrow  begin{cases}x\[2ex]x+1end{cases}

El enunciado del problema dice que al sumar los dos números seguidos más 12, se obtiene el número 47. Por lo tanto, la ecuación del problema será:

x+(x+1)+12=47

x+x+1+12=47

Una vez hemos logrado plantear la ecuación de guide grado, la resolvemos:

x+x=-1-12+47

2x=34

x=cfrac{34}{2}

x=17

Por lo tanto, los dos números seguidos que buscamos kid 17 y su siguiente número, esto es, 18.

x=17

x+1=18

Problema 3

La altura de un rectángulo mide 3 veces más que su base. Si el perímetro del rectángulo mide 96 centimeters, ¿ cuáles kid las dimensiones del rectángulo?

En este problema tenemos que calcular la base y la altura del rectángulo. Además, el enunciado nos dice que la altura es tres veces más grande que la base, de manera que si llamamos x a la base, la altura será:

x=base

3x=altura

Así pues, el perímetro de un rectángulo es la suma del doble de su base más el doble de su altura, por lo tanto:

2x+2cdot 3x=96

Resolvemos la ecuación lineal obtenida:

2x+6x=96

8x=96

x=cfrac{96}{8}

x=12

Así que el valiance de la base y la altura del rectángulo serán:

base=x=12  cm

altura=3x=3cdot 12= 36  cm

Problema 4

María tiene el three-way de dinero que Miguel y entre los dos tienen en overall 56EUR. ¿ Cuánto dinero tiene cada uno?

Si decimos que x es el dinero que Miguel tiene, el dinero que tiene María será 3x, ya que María tiene tres veces más dinero que Miguel.

x=text{dinero de Miguel}

3x=text{dinero de Mar'ia}

Si entre los dos suman 56EUR, significa que se cumple la siguiente ecuación de guide grado:

x+3x=56

Despejamos la x de ecuación de guide grado obtenida:

4x=56

x=cfrac{56}{4}

x=14

En conclusión, Miguel tiene 14EUR y María el triple, que es 42EUR.

text{dinero de Miguel}=x=14

text{dinero de Mar'ia}=3x=3cdot 14=42

Problema 5

Si un padre tiene 42 años y sus hijos 18 y 20 años, ¿ cuántos años deben pasar para que la edad del padre sea la suma de las edades de sus hijos?

En este problema, la incógnita es los años que deben pasar para que se cumpla condición de edades del enunciado.

x=text{a~nos que deben pasar}

Entonces, para calcular la edad de alguien en el futuro, se debe sumar su edad real más x. En consecuencia, la ecuación lineal del problema es:

(42+x)=(18+x)+(20+x)

42+x=18+x+20+x

Finalmente, hallamos el valiance de x de la ecuación:

x-x-x=-42+18+20

-x=-4

x=cfrac{-4}{-1}

x=4

De modo que deben pasar cuatro años para que la suma de las edades de los hijos sea equivalente a la edad del padre.

Problema 6

En una sala hay 451 identities. Además, se sabe que hay 47 mujeres más que hombres. ¿ Cuántas mujeres y cuántos hombres hay en la sala?

Si llamamos x al número de hombres que hay en la sala, el número de mujeres será x +47:

x=text{n'umero de hombres}

x+47=text{n'umero de mujeres}

Así pues, el enunciado del problema dice que la suma del número de hombres y de mujeres da 451, lo que significa que se debe cumplir la siguiente igualdad:

x+(x+47)=451

x+x+47=451

Ahora solucionamos la ecuación de guide grado:

x+x=-47+451

2x=404

x=cfrac{404}{2}

x=202

Y, por último, interpretamos la solución obtenida. En la sala hay 202 hombres, por otro lado, el número de mujeres es 202 más 47, es decir, 249 mujeres.

text{n'umero de hombres}=x=202

text{n'umero de mujeres}=x+47=202+47=249

Problema 7

En un car park de coches y motos hay 83 vehículos. Si en overall se han contado 256 ruedas, ¿ cuántos coches y cuántas motos hay en el car park?

Para resolver este problema, llamaremos x al número de coches que hay en el car park. De modo que el número de motos será la diferencia entre 83 y x.

x=text{n'umero de coches}

83-x=text{n'umero de motos}

Como sabes, un coche tiene cuatro ruedas y una moto tiene dos ruedas. Por lo tanto, si en el car park hay un overall de 256 ruedas, se debe cumplir la siguiente ecuación:

4x+2cdot (83-x)=256

Así pues, resolvemos la ecuación de guide grado disadvantage paréntesis del problema:

4x+166-2x=256

4x-2x=256-166

2x=90

x=cfrac{90}{2}

x=45

En conclusión, en el car park hay 45 coches y, por otro lado, el número de motos es la diferencia entre 83 y 45, que es 38.

text{n'umero de coches}=x=45

text{n'umero de motos}=83-x=83-45=38

Problema 8

Un número aumentado en 9 unidades es igual al mismo número multiplicado por 4. ¿ De qué número se trata?

En este caso, la incógnita del problema es el número que queremos hallar:

x=text{n'umero que buscamos}

Así pues, el enunciado nos dice que sumar 9 al número equivale a multiplicar dicho número por 4. Por lo tanto, se cumplirá la siguiente ecuación:

x+9=4x

Finalmente, resolvemos la ecuación de guide grado del problema:

x-4x=-9

-3x=-9

x=cfrac{-9}{-3}

x=3

Problema 9

Hemos dejado el coche 6 horas en un car park. Si hemos pagado con un billete de 20EUR y nos han dado de cambio 11EUR, ¿ cuál es el precio por hora del car park?

En este problema queremos averiguar la tarifa del car park, así que la incógnita del problema será:

x=text{precio por hora del parking}

A partir de la información del enunciado del problema, planteamos la ecuación de guide grado:

20-6x=11

Y, por último, resolvemos la ecuación:

-6x=-20+11

-6x=-9

x=cfrac{-9}{-6}

x=1,5

De modo que el car park cobra 1,5 EUR/hora por dejar el coche dentro.

Problema 10

Carlos hace una compra de 7EUR. Entonces, el doble del dinero que le queda más 4EUR da justo el dinero que tenía al principio. ¿ Cuántos euros tenía Carlos antes de hacer la compra?

La incógnita que queremos determinar en este problema es el dinero que tenía Carlos al principio.

x=text{dinero de Carlos al principio}

Así pues, planteamos la ecuación de guide grado del problema disadvantage la información del enunciado:

2(x-7)+4=x

Finalmente, resolvemos la ecuación de guide grado disadvantage paréntesis del problema:

2x-14+4=x

2x-x=14-4

x=10

En conclusión, Carlos tenía al principio, antes de realizar la compra, 10EUR.

Solucionamos tu problema de ecuaciones de guide grado

Si tienes algún problema disadvantage una ecuación de guide grado y no sabes cómo resolverlo, lo puedes escribir en los comentarios y resolveremos el problema rápidamente.



Source link .